Ubiquitination of neuronal nitric-oxide synthase in the calmodulin-binding site triggers proteasomal degradation of the protein.
نویسندگان
چکیده
Nitric-oxide synthase, a cytochrome P450-like hemoprotein enzyme, catalyzes the synthesis of nitric oxide, a critical signaling molecule in a variety of physiological processes. Our laboratory has discovered that certain drugs suicide-inactivate neuronal nitric-oxide synthase (nNOS) and lead to the preferential ubiquitination of the inactivated nNOS by an Hsp70- and CHIP (C terminus of Hsc70-interacting protein)-dependent process. To further understand the process by which altered nNOS is recognized, ubiquitinated, and proteasomally degraded, we examined the sites of ubiquitination on nNOS. We utilized an in vitro ubiquitination system containing purified E1, E2 (UbcH5a), Hsp70, and CHIP that recapitulates the ability of the cells to selectively recognize and ubiquitinate the altered forms of nNOS. LC-MS/MS analysis of the tryptic peptides obtained from the in vitro ubiquitinated nNOS identified 12 ubiquitination sites. Nine of the sites were within the oxygenase domain and two were in the calmodulin-binding site, which links the oxygenase and reductase domains, and one site was in the reductase domain. Mutational analysis of the lysines in the calmodulin-binding site revealed that Lys-739 is a major site for poly-ubiquitination of nNOS in vitro and regulates, in large part, the CHIP-dependent degradation of nNOS in HEK293 cells, as well as in in vitro studies with fraction II. Elucidating the exact site of ubiquitination is an important step in understanding how chaperones recognize and trigger degradation of nNOS.
منابع مشابه
Ubiquitination and degradation of neuronal nitric-oxide synthase in vitro: dimer stabilization protects the enzyme from proteolysis.
It is established that neuronal NO synthase (nNOS) is ubiquitinated and proteasomally degraded. The metabolism-based inactivation of nNOS and the inhibition of heat shock protein 90 (hsp90)-based chaperones, which are known to regulate nNOS, both lead to enhanced proteasomal degradation of nNOS. The mechanism of this selective proteolytic degradation, or in essence how the nNOS becomes labilize...
متن کاملCHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation.
Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. It is reported that iNOS is degraded mainly by the ubiquitin-proteasome pathway in RAW264.7 cells and human embryonic kidney (HEK) 293 cells. In this study, we showed that iNOS was ubiquitinated and degraded dependent on CHIP (COOH terminus of heat shock p...
متن کاملAlteration of the Heme Prosthetic Group of Neuronal Nitric- Oxide Synthase during Inactivation by N-Amino-L-arginine in Vitro and in Vivo
It is established that N-amino-L-arginine (NAA) is a metabolism-based inactivator of all three major nitric-oxide synthase (NOS) isoforms. The mechanism by which this inactivation occurs, however, is not well understood. In the current study, we discovered that inactivation of the neuronal isoform of NOS (nNOS) by NAA in vitro results in covalent alteration of the heme prosthetic group, in part...
متن کاملNeuronal nitric oxide synthase and calmodulin-dependent protein kinase IIalpha undergo neurotoxin-induced proteolysis.
Calpain (calcium-activated neutral protease) has been implicated as playing a role of neuronal injury in cerebral ischemia and excitotoxicity. Here we report that, in addition to extreme excitotoxic conditions [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate challenges], other neurotoxins such as maitotoxin, A23187, and okadaic acid also...
متن کاملMetabolism-based inactivation of neuronal nitric-oxide synthase by components of cigarette and cigarette smoke.
It has been shown that administration of cigarette smoke to rats leads to loss of neuronal nitric-oxide synthase (nNOS) activity and nNOS protein in penile tissue. The exact mechanism for this loss of activity and protein is not known. In the current study, we investigated whether extracts prepared from cigarette smoke or from the cigarette itself could directly inhibit nNOS activity. We discov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 51 شماره
صفحات -
تاریخ انتشار 2012